A matrix generation approach for eigenvalue optimization

نویسندگان

  • Mohammad R. Oskoorouchi
  • Jean-Louis Goffin
چکیده

We study the extension of a column generation technique to eigenvalue optimization. In our approach we utilize the method of analytic center to obtain the query points at each iteration. A restricted master problem in the primal space is formed corresponding to the relaxed dual problem. At each step of the algorithm, an oracle is called to return the necessary columns to update the restricted master. Since eigenvalue optimization yields to a nonpolyhedral model, at some query points the oracle generates matrices, rather than traditional columns. In this case, we update the restricted master problem by enlarging the matrix variable by a block-diagonal element. We discuss the issues of recovering feasibility after the restricted master is updated by a column or a matrix. The numerical result of implementing the algorithm on randomly generated problems is reported.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new algorithm for the computation of the smallest eigenvalue of a symmetric matrix and its eigenspace

The problem of nding the smallest eigenvalue and the corresponding eigenspace of a symmetric matrix is stated as a semide nite optimization problem. A straightforward application of nowadays more or less standard routines for the solution of semide nite problems yields a new algorithm for the smallest eigenvalue problem; the approach not only yields the smallest eigenvalue, but also a symmetric...

متن کامل

On the nonnegative inverse eigenvalue problem of traditional matrices

In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.

متن کامل

MATHEMATICAL ENGINEERING TECHNICAL REPORTS Eigenvalue Optimization of Structures via Polynomial Semidefinite Programming

This paper presents a sequential semidefinite programming (SDP) approach to maximize the minimal eigenvalue of the generalized eigenvalue problem, in which the two symmetric matrices defining the eigenvalue problem are supposed to be the polynomials in terms of the variables. An important application of this problem is found in the structural optimization which attempts to maximize the minimal ...

متن کامل

On robust matrix completion with prescribed eigenvalues

Matrix completion with prescribed eigenvalues is a special kind of inverse eigenvalue problems. Thus far, only a handful of specific cases concerning its existence and construction have been studied in the literature. The general problem where the prescribed entries are at arbitrary locations with arbitrary cardinalities proves to be challenging both theoretically and computationally. This pape...

متن کامل

Maximizing the Smallest Eigenvalue of a Symmetric Matrix: A Submodular Optimization Approach

This paper studies the problem of selecting a submatrix of a positive definite matrix in order to achieve a desired bound on the smallest eigenvalue of the submatrix. Maximizing this smallest eigenvalue has applications to selecting input nodes in order to guarantee consensus of networks with negative edges as well as maximizing the convergence rate of distributed systems. We develop a submodul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program.

دوره 109  شماره 

صفحات  -

تاریخ انتشار 2007